T-duality - определение. Что такое T-duality
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое T-duality - определение


T-duality         
  • A diagram of string theory dualities. Blue edges indicate [[S-duality]]. Red edges indicate T-duality.
DUALITY IN STRING THEORY IN WHICH COMPACTIFICATIONS ON SMALL SPACES ARE EQUIVALENT TO COMPACTICATIONS ON SPACES OF THE INVERSE SIZE; INTERCHANGES DISCRETE KK MOMENTUM WITH WINDING NUMBER
In theoretical physics, T-duality (short for target-space duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. In the simplest example of this relationship, one of the theories describes strings propagating in a spacetime shaped like a circle of some radius R, while the other theory describes strings propagating on a spacetime shaped like a circle of radius proportional to 1/R.
U-duality         
SYMMETRY OF M-THEORY COMPACTIFICATIONS THAT INCLUDES T-DUALITY AND S-DUALITY AS SUBGROUPS; THE SUPERGRAVITY THEORY U-DUALITY GROUP IS AN E-SERIES LIE GROUP, WHILE STRINGY EFFECTS BREAK IT TO A DISCRETE SUBGROUP
U-duality group
In physics, U-duality (short for unified duality)S. Mizoguchi, "On discrete U-duality in M-theory", 2000.
Matlis duality         
MATHEMATICAL THEOREM THAT, OVER A NOETHERIAN COMPLETE LOCAL RING, THE CATEGORIES OF NOETHERIAN AND ARTINIAN MODULES ARE ANTI-ISOMORPHIC
Matlis module; Macaulay duality
In algebra, Matlis duality is a duality between Artinian and Noetherian modules over a complete Noetherian local ring. In the special case when the local ring has a field mapping to the residue field it is closely related to earlier work by Francis Sowerby Macaulay on polynomial rings and is sometimes called Macaulay duality, and the general case was introduced by .